South Point Institute of

Technology And Management

2

Al with Python
Practical file
(MCA201C)
Submitted to- Submitted by-
Mrs. Jyoti Sharma KUNAL

MCA 2" year
23021541017

1|Page

Index

Sno.

Title

Pgno.

Signature

Depth first search

Breadth first search

A*algorithm

5-7

BIwIN e

Min-max algorithm of Game
Theory

8-9

Write a Program to analyze
data and display in the form
of a bar graph for two
departments of acompany
having employee id numbers
on X-axis and their salaries
on Y axis.

10

Write a program to
analyze and draw a line
graph to show the profits
of a company in various

years.

11

Customer segmentation
project using K Means
Clustering.

12-16

Music genre classification
project.

17-20

Stock price prediction project
using LSTM (Long short-term
memory).

21-24

10.

Fake news detection project.

25-31

2|Page

1. Depth-First Search

graph = {
513,71,
3:[2,'4),
718,
2],
‘4" '8,

81 (]

visited = set()

def dfs(visited, graph, node):
if node not in visited:
print(node)
visited.add(node)
for neighbour in graph[node]:
dfs(visited, graph, neighbour)
print("Depth-First Search:")

dfs(visited, graph, '5')

Output:

Depth-First Search:

3|Page

2. Breadth First Search

graph = {
'5': 3,7,
'3':['2','4],
7' 181,
2",
‘48],
'8":]

}

visited =[]

queue = []

def bfs(visited, graph, node): #function for BFS
visited.append(node)

gueue.append(node)

while queue:
m = queue.pop(0)
print (m,end="")
for neighbour in graph[m]:
if neighbour not in visited:
visited.append(neighbour)
gueue.append(neighbour)
print("Following is the Breadth-First Search")

bfs(visited, graph, '5')

Output:

Following is the Breadth-First Search

53 7 2 4 8 >

4| Page

3. A* Algorithm

tree = {'S": [['A", 1], ['B", 5], ['C', 8]],
‘AL [l's, 1), ['DY 3], IR, 7], ['GY 9,
‘B [['S', 51, ['G', 4],
'c:l's), 8], ['6', 51,
‘D [['AY 3]],

‘B (I'AL 711

tree2 = {'S": [['A', 1], ['B', 2]],
‘ALlS 11,
‘B (['S', 2], ['C), 3], ['D', 4]],
'c:(['8', 2], ['E', 51, ['F', 6]],
‘D [['8', 4], ['G', 71],
‘B (['C, 51,
'FL['C, 6]l
}

heuristic ={'S": 8,'A": 8, 'B': 4, 'C": 3, 'D": 5000, 'E': 5000, 'G": 0}

heuristic2 ={'S': 0, 'A': 5000, 'B'": 2, 'C": 3, 'D": 4, 'E': 5000, 'F': 5000, 'G": 0}
cost ={'S": 0}
def AStarSearch():

global tree, heuristic

closed =[]

opened =[['S', 8]]

while True:

5|Page

fn = [i[1] for i in opened]
chosen_index = fn.index(min(fn))
node = opened[chosen_index][0]
closed.append(opened[chosen_index])
del opened[chosen_index]
if closed[-1][0] =="G":
break
for item in tree[node]:
if item[0] in [closed_item[0] for closed_item in closed]:
continue
cost.update({item[0]: cost[node] + item[1]})
fn_node = cost[node] + heuristic[item[0]] + item[1]
temp = [item[0], fn_node]
opened.append(temp)
trace_node ='G'
optimal_sequence = ['G']
foriinrange(len(closed)-2, -1, -1):
check_node = closed][i][0]
if trace_node in [children[0] for children in tree[check _node]]:
children_costs = [temp[1] for temp in tree[check_node]]

children_nodes = [temp[0] for temp in tree[check_node]]

if cost[check_node] + children_costs[children_nodes.index(trace_node)] == cost[trace_node]:
optimal_sequence.append(check_node)
trace_node = check node
optimal_sequence.reverse()
return closed, optimal_sequence
if _name__ _==' main_"
visited_nodes, optimal_nodes = AStarSearch()

print('visited nodes: ' + str(visited_nodes))

print(‘optimal nodes sequence: ' + str(optimal_nodes))

6|Page

Output:

visited nodes: [['S', 8], ['A', 9], ['B', 9],
optimal nodes sequence: ['S', 'B', 'G']

['G", 9]1]

7|Page

4. Min-max algorithm of Game Theory

import math

def minimax (curDepth, nodelndex,
maxTurn, scores,

targetDepth):

if (curDepth == targetDepth):

return scores[nodelndex]

if (maxTurn):
return max(minimax(curDepth + 1, nodelndex * 2,
False, scores, targetDepth),
minimax(curDepth + 1, nodelndex * 2 + 1,

False, scores, targetDepth))
else:
return min(minimax(curDepth + 1, nodelndex * 2,
True, scores, targetDepth),
minimax(curDepth + 1, nodelndex * 2 + 1,
True, scores, targetDepth))
scores=[3,5,2,9,12,5, 23, 23]

treeDepth = math.log(len(scores), 2)

print("The optimal valueis: ", end ="")

print(minimax(0, 0, True, scores, treeDepth))

8|Page

Output:

The optimal value is :

12

9|Page

5. Write a Program to analyze data and display in
the form of a bar graph for two departments of a
company having employee id numbers on X-axis
and their salaries on Y axis.

import matplotlib.pyplot as pl

import numpy as np

Empld=['EO1','E02','E03','E04','EO5']

Sal = [10000,20000,30000,40000,50000]

pl.xlabel("Employee IDs")
pl.ylabel("Salary")
pl.bar(Empld,Sal)

pl.show()

Output:

[Execution complete with exit code @]

EOZ2 EOQ= EO<%
Employes IDs

10| Page

6. Write a program to analyze and draw a line
graph to show the profits of a company in
various years.

import matplotlib.pyplot as pl

import numpy as np

Yr =['2019','2020','2021','2022','2023']

Profit = ['1Mil $','2Mil $','3Mil $','4Mil §','5Mil ']

pl.xlabel("Profit")
pl.ylabel("Years")
pl.plot(Yr,Profit)

pl.show()

Output:

[Execution complete with exit code 0]

S5Mil $ 4

aMmil s

3Mil S

Years

2Mil $

IMil $

2019 2020 2021 2022 2023
Profit

11| Page

/. Customer segmentation project using K
Means Clustering.

. Imports:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.cluster import KMeans

. Data Collection & Analysis:
loading the data from csv file to a Pandas DataFrame

customer_data = pd.read_csv('/content/Mall_Customers.csv')

first 5 rows in the dataframe
customer_data.head()

CustomerlD Gender Age AnnualIncome (k$) Spending Score (1-100)

0 1 Male 19 15 39
1 2 Male 21 15 81
2 3 Female 20 16 6
3 4 Female 23 16 77
4 5 Female 31 17 40

12| Page

finding the number of rows and columns
customer_data.shape

(200, 5)

getting some informations about the dataset

customer_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, © to 199
Data columns (total 5 columns):

Column Non-Null Count Dtype
%) CustomerID 200 non-null int64
1 Gender 200 non-null object
2 Age 200 non-null int64
3 Annual Income (k$) 200 non-null int64

4 Spending Score (1-100) 200 non-null int64
dtypes: int64(4), object(1l)
memory usage: 7.9+ KB

checking for missing values
customer_data.isnull().sum()

CustomerID

Gender

Age

Annual Income (k$)
Spending Score (1-1090)
dtype: int64

O 0O ®© O ®

13 |Page

. Choosing the Annual Income Column & Spending Score column:

X =customer_data.iloc[:,[3,4]].values

print(X)

[[15 39] [19 72] [24 73]
[15 81] [19 14] [25 5]
[16 6] [19 99] [25 73]
[16 77] [20 15] [28 14]
[17 40] [20 77] e

[17 76] [20 13] [126 28]
[18 6] [26 79] (126 74]
[18 94] [21 35] [137 18]
[19 3] [21 66] [137 83]]

. Choosing the number of clusters:
. WCSS -> Within Clusters Sum of Squares
finding wcss value for different number of clusters
wcss =[]
foriinrange(1,11):
kmeans = KMeans(n_clusters=i, init="k-means++', random_state=42)
kmeans.fit(X)
wcss.append(kmeans.inertia_)
plot an elbow graph
sns.set()
plt.plot(range(1,11), wcss)
plt.title('The Elbow Point Graph')
plt.xlabel('Number of Clusters')

plt.ylabel('WCSS')
plt.show()

14| Page

The Elbow Point Graph

250000

200000

150000

WCSS

100000

50000

2 4 6
Number of Clusters

. Optimum Number of Clusters =5
. Training the k-Means Clustering Model:
kmeans = KMeans(n_clusters=5, init='k-means++', random_state=0)

return a label for each data point based on their cluster
Y = kmeans.fit_predict(X)

print(Y)

N AR W
PN OO W
N A ® R W
AN O ® WR
N OO R W
A0 OO WR
N RO OO W
AN O O® WR
N RO R W
AN OO ®©® @ K
N RO W
BN OO O®
[NC S ST > B <> B VS
AN A O ® R

2]

10

31313131313131313131313
POPOOODOOOOOONDOODOOBODOOBOLO
P0DOODODOOOOODOOOLDOOBODOBOOD
20242420242424242024242
42424242424242424242424

15| Page

.5Clusters- 0,1,2,3,4
. Visualizing all the Clusters:
plotting all the clusters and their Centroids

plt.figure(figsize=(8,8))

plt.scatter(X[Y==0,0], X[Y==0,1], s=50, c='green’, label='Cluster 1')
plt.scatter(X[Y==1,0], X[Y==1,1], s=50, c="red', label="Cluster 2')
plt.scatter(X[Y==2,0], X[Y==2,1], s=50, c="yellow', label="'Cluster 3')
plt.scatter(X[Y==3,0], X[Y==3,1], s=50, c='violet', label="Cluster 4')
plt.scatter(X[Y==4,0], X[Y==4,1], s=50, c="blue', label='Cluster 5')

plot the centroids

plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, c='cyan’,
label="Centroids')

plt.title('Customer Groups')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')

plt.show()
Customer Groups
100 T
®
L
8
s
80 ® : @
s .
e ® 0o
® o

@ ®
60 @ o
= ® _g oo

Spending Score
© ..O
e
@
Do
it
-«

40 O ¢ ﬂ ® °
o
e ®
® ¢ °
L
20 ‘ 8 °
a ® °
o S°°
Se a -
@
U .
20 40 60 80 100 120 140

Annual Income

16 |Page

8. Music genre classification project.

. Imports:

from python_speech_features import mfcc
import scipy.io.wavfile as wav
import numpy as np

from tempfile import TemporaryFile
import os

import pickle

import random

import operator

import math
import numpy as np

. Define a function to get the distance between feature vectors and find neighbors:

def getNeighbors(trainingSet, instance, k):

distances =[]

for x in range (len(trainingSet)):
dist = distance(trainingSet[x], instance, k)+ distance(instance, trainingSet[x], k)
distances.append((trainingSet[x][2], dist))

distances.sort(key=operator.itemgetter(1))

neighbors =[]

for x in range(k):
neighbors.append(distances[x][0])

return neighbors

. Identify the nearest neighbors:

def nearestClass(neighbors):
classVote = {}

for x in range(len(neighbors)):
response = neighbors[x]
if response in classVote:
classVote[response]+=1
else:
classVote[response]=1

sorter = sorted(classVote.items(), key = operator.itemgetter(1), reverse=True)
return sorter[0][0]

17 |Page

. Define a function for model evaluation:

def getAccuracy(testSet, predictions):
correct=0
for x in range (len(testSet)):
if testSet[x][-1]==predictions[x]:
correct+=1
return 1.0*correct/len(testSet)

. Extract features from the dataset and dump these features into a binary .dat file “my.dat”:

directory="_path_to_dataset__
f= open("my.dat" ,'wb')
i=0

for folder in os.listdir(directory):

i+=1

ifi==11:
break

for file in os.listdir(directory+folder):
(rate,sig) = wav.read(directory+folder+"/"+file)
mfcc_feat = mfcc(sig,rate ,winlen=0.020, appendEnergy = False)
covariance = np.cov(np.matrix.transpose(mfcc_feat))
mean_matrix = mfcc_feat.mean(0)
feature = (mean_matrix, covariance, i)
pickle.dump(feature , f)

f.close()

. Train and test split on the dataset:

dataset =[]
def loadDataset(filename , split, trSet, teSet):
with open("my.dat", 'rb') as f:
while True:
try:
dataset.append(pickle.load(f))
except EOFError:
f.close()
break

for x in range(len(dataset)):
if random.random() <split :
trSet.append(dataset([x])
else:
teSet.append(dataset[x])

trainingSet =[]

testSet =]
loadDataset("my.dat", 0.66, trainingSet, testSet)

18| Page

. Make prediction using k Nearest Neighbours and get the accuracy on test data:

leng = len(testSet)

predictions =[]

for x in range (leng):
predictions.append(nearestClass(getNeighbors(trainingSet ,testSet[x], 5)))

accuracyl = getAccuracy(testSet, predictions)
print(accuracyl)

accurac
0°6943620178041543

. Test the classifier with new audio file

from python_speech_features import mfcc
import scipy.io.wavfile as wav

import numpy as np

from tempfile import TemporaryFile
import os

import pickle

import random

import operator

import math
import numpy as np
from collections import defaultdict

dataset =[]
def loadDataset(filename):
with open("my.dat", 'rb') as f:
while True:
try:
dataset.append(pickle.load(f))
except EOFError:
f.close()
break

loadDataset("my.dat")

def distance(instancel , instance2, k):
distance =0
mm1 =instancel[0]
cml = instancel[1]
mm?2 =instance2[0]
cm2 = instance2[1]
distance = np.trace(np.dot(np.linalg.inv(cm2), cm1))
distance+=(np.dot(np.dot((mm2-mm1).transpose() , np.linalg.inv(cm2)) , mm2-mm1))
distance+= np.log(np.linalg.det(cm2)) - np.log(np.linalg.det(cm1))

19| Page

distance-= k
return distance

def getNeighbors(trainingSet , instance, k):

distances =[]

for x in range (len(trainingSet)):
dist = distance(trainingSet[x], instance, k)+ distance(instance, trainingSet[x], k)
distances.append((trainingSet[x][2], dist))

distances.sort(key=operator.itemgetter(1))

neighbors =[]

for x in range(k):
neighbors.append(distances[x][0])

return neighbors

def nearestClass(neighbors):
classVote ={}
for x in range(len(neighbors)):
response = neighbors|[x]
if response in classVote:
classVote[response]+=1
else:
classVote[response]=1
sorter = sorted(classVote.items(), key = operator.itemgetter(1), reverse=True)
return sorter[0][0]

results=defaultdict(int)

i=1

for folder in os.listdir("./musics/wav_genres/"):
results[i]=folder
i+=1

(rate,sig)=wav.read(“sample_test.wav")
mfcc_feat=mfcc(sig,rate,winlen=0.020,appendEnergy=False)
covariance = np.cov(np.matrix.transpose(mfcc_feat))
mean_matrix = mfcc_feat.mean(0)
feature=(mean_matrix,covariance,0)

pred=nearestClass(getNeighbors(dataset ,feature, 5))

print(results[pred])

In [27]: (rate sig):wav.read("sample test.wayv
mfcc feat=mfcc(sig, rate,winten=0.020
covariance = np.cov(np.matrix.transp
mean matrix = mfcc Teat.mean(0)
feature=(mean_matrix, covariance,0)

In [28]: pred=nearestClass(getNeighbors(trainingSet ,testSet[x] ,

In [29]: print(results[pred])
pop

5))

20| Page

9.Stock price prediction project using LSTM (Long

short-term memory).

. Imports:

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from matplotlib.pylab import rcParams
rcParams['figure.figsize']=20,10

from keras.models import Sequential

from keras.layers import LSTM,Dropout,Dense

from sklearn.preprocessing import MinMaxScaler

. Read the dataset:

df=pd.read_csv("NSE-TATA.csv")
df.head()

Date Open High Low Last Close ng:,::,?g; Tur(tc;\éz;
0 2018_1(?8_ 208.00 222.25 206.85 216.00 215.15 4642146.0 10062.83
1 2018-185- 217.00 218.60 205.90 210.25 209.20 3519515.0 7407.06
2 2018'1(?‘; 223.50 227.80 216.15 217.25 218.20 1728786.0 3815.79
3 2018-]“(?3; 230.00 237.50 225.75 226.45 227.60 1708590.0 3960.27
4 2018_181- 234.55 234.60 221.05 230.30 230.90 1534749.0 3486.05

21| Page

. Analyze the closing prices from dataframe:

df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d")
df.index=df['Date']

plt.figure(figsize=(16,8))
plt.plot(df["Close"],label="'Close Price history')

[<matplotlib.lines.Line2D at Ox7flbe3c225c0>]

2014 2015 2016

. Sort the dataset on date time and filter “Date” and “Close” columns:

data=df.sort_index(ascending=True,axis=0)
new_dataset=pd.DataFrame(index=range(0,len(df)),columns=['Date’,'Close'])

foriin range(0,len(data)):
new_dataset["Date"][i]=data['Date'][i]
new_dataset["Close"][i]=data["Close"][i]

2018

22 |Page

. Normalize the new filtered dataset:

scaler=MinMaxScaler(feature_range=(0,1))
final_dataset=new_dataset.values

train_data=final_dataset[0:987,:]
valid_data=final_dataset[987:,:]

new_dataset.index=new_dataset.Date
new_dataset.drop("Date",axis=1,inplace=True)
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data=scaler.fit_transform(final_dataset)

X_train_data,y_train_data=[],[]

foriinrange(60,len(train_data)):
X_train_data.append(scaled_data[i-60:i,0])
y_train_data.append(scaled_datali,0])

X_train_data,y_train_data=np.array(x_train_data),np.array(y_train_data)

X_train_data=np.reshape(x_train_data,(x_train_data.shape[0],x_train_data.shape[1],1))

. Build and train the LSTM model:

Istm_model=Sequential()
Istm_model.add(LSTM(units=50,return_sequences=True,input_shape=(x_train_data.shape[1],1)))
Istm_model.add(LSTM(units=50))

Istm_model.add(Dense(1))

inputs_data=new_dataset[len(new_dataset)-len(valid_data)-60:].values
inputs_data=inputs_data.reshape(-1,1)
inputs_data=scaler.transform(inputs_data)

Istm_model.compile(loss='mean_squared_error',optimizer='adam’')
Istm_model.fit(x_train_data,y_train_data,epochs=1,batch_size=1,verbose=2)

. Take a sample of a dataset to make stock price predictions using the LSTM model:

X_test=[]

foriin range(60,inputs_data.shape[0]):
X_test.append(inputs_datali-60:i,0])

X_test=np.array(X_test)

X_test=np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))

predicted_closing_price=Istm_model.predict(X_test)
predicted_closing_price=scaler.inverse_transform(predicted_closing_price)

. Save the LSTM model:

Istm_model.save("saved_model.h5")

23| Page

. Visualize the predicted stock costs with actual stock costs:

train_data=new_dataset[:987]
valid_data=new_dataset[987:]
valid_data['Predictions']=predicted_closing_price
plt.plot(train_data["Close"])
plt.plot(valid_data[['Close’,"Predictions"]])

[<matplotlib.lines.Line2D at Ox7flbbQ4b8b70>
<matplotlib.lines.Line2D at Ox7f1bb04b8c88>1
\ ! r"\r‘
; W
i \
f,!
U M W '\) J“‘\rlv/r‘ l""“““\ 1~44."L“ J‘“, M v M o) " JI
WA T p ‘-‘,’ﬂ\ M \ M ‘,.,vv.{) \ ' Y
W }/'f’» A o

24 |Page

10. Fake news detection project:

. Imports:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn import feature_extraction, linear_model, model_selection, preprocessing
from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

. Read datasets:

fake = pd.read_csv("data/Fake.csv")
true = pd.read_csv("data/True.csv")

fake.shape
(23481, 4)

true.shape
(21417, 4)

25| Page

. Data cleaning and preparation:

Add flag to track fake and real
fake['target'] = 'fake’
true['target'] = 'true'

Concatenate dataframes

data = pd.concat([fake, true]).reset_index(drop = True)

data.shape

(44898, 5)

Shuffle the data

from sklearn.utils import shuffle
data = shuffle(data)

data = data.reset_index(drop=True)

Check the data
data.head()

title
0 EU Commission says all sides should stick to ...

PRESIDENT TRUMP Looking at Executive Action
on...

2 EU official says no sign Trump plans to ease R...

Subdued by Harvey, Congress reconvenes facing

EVIL HILLARY SUPPORTERS Yell “F*ck Trump”...
Burn...

text

BRUSSELS (Reuters) - The European Commission
S

Remember during the effort to get Obamacare
pa..

WASHINGTON (Reuters) - A senior European
Union...

WASHINGTON (Reuters) - Hurricane Harvey
devast...

These people are sick and evil. They will stop...

subject

worldnews

politics

politicsNews

politicsNews

politics

date target

October 6, 2017 true
Aug 1, 2017 fake

April 4, 2017 true

September 4,

2017 true

Nov 6, 2016 fake

26 |Page

Removing the title (we will only use the text)
data.drop(["title"],axis=1,inplace=True)

Convert to lowercase
data['text'] = data['text'].apply(lambda x: x.lower())

Remove punctuation
import string

def punctuation_removal(text):
all_list = [char for char in text if char not in string.punctuation]
clean_str = ".join(all_list)
return clean_str

data['text'] = data['text'].apply(punctuation_removal)

Removing stopwords

import nltk
nltk.download('stopwords')

from nltk.corpus import stopwords
stop = stopwords.words('english’)

data['text'] = data['text'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))

data.head()

text

0 brussels reuters european commission said frid...

1 remember effort get obamacare passed nancy pel...

washington reuters senior european union offic...

2
3 washington reuters hurricane harvey devastated...
4

people sick evil stop nothing get way laws mea...

. Basic data exploration:

How many articles per subject?
print(data.groupby(['subject'])['text'].count())
data.groupby(['subject'])['text'].count().plot(kind="bar")
plt.show()

subject target
worldnews true

politics fake

politicsNews true
politicsNews true
politics fake

27 |Page

subject

Government News 1570
Middle-east 778
News 9050
US_News 783
left-news 4459
politics 6841
politicsNews 11272
worldnews 10145
Name: text, dtype: int64

News
US_News
left-news

politics

10000 -
8000
6000
4000 A
2000
0 j N

7

m

W

o

=]

=

=

subject

politicsNews
worldnews

Government News

28 | Page

How many fake and real articles?

print(data.groupby(['target'])['text'].count())
data.groupby(['target'])['text'].count().plot(kind="bar")
plt.show()

target

fake 23481

true 21417

Name: text, dtype: int64

20000 1

15000 -

10000 A

5000 -

fake

target

true

Most frequent words counter
from nltk import tokenize

token_space = tokenize.WhitespaceTokenizer()

def counter(text, column_text, quantity):

all_words ="".join([text for text in text[column_text]])

token_phrase = token_space.tokenize(all_words)

29| Page

frequency = nltk.FreqDist(token_phrase)
df_frequency = pd.DataFrame({"Word": list(frequency.keys()),
"Frequency": list(frequency.values())})
df_frequency = df frequency.nlargest(columns = "Frequency", n = quantity)
plt.figure(figsize=(12,8))
ax = sns.barplot(data = df_frequency, x = "Word", y = "Frequency", color = 'blue')
ax.set(ylabel = "Count")
plt.xticks(rotation="vertical')
plt.show()

Most frequent words in fake news
counter(data[data["target"] == "fake"], "text", 20)

70000 4

G0000 4

50000 4

30000 4

20000 4

10000 ~

o = u =2 /= L'F) = m [. = o [~ P~ o W u
g ® 4 §F % ¥ 9 5 2 & % & F 2 8 § £ g %
R .- m
Z 3 = g E © c &g & = E B +#
= i 4 g 8 4 =
<
Word

Most frequent words in real news
counter(data[data["target"] == "true"], "text", 20)

30|Page

via

100000

80000 4

negy

uoBuIysem

Ell

158

pIno

Prog

2jdoad

uedgndz

payiLn

os|e

s3JeEs

asnoy

ML

BIETTHFIETY)

a3exs

Juzpis=.d

siainal

PInas

dwng

pies

Word

31|Page

32| Page

	AI with Python
	1. Depth-First Search
	2. Breadth First Search
	4. Min-max algorithm of Game Theory
	5. Write a Program to analyze data and display in
	6. Write a program to analyze and draw a line

	7. Customer segmentation project using K
	. Imports:
	. Data Collection & Analysis:
	. Choosing the number of clusters:
	. Optimum Number of Clusters = 5
	. 5 Clusters - 0, 1, 2, 3, 4
	8. Music genre classification project.
	. Imports:
	. Define a function to get the distance between feature vectors and find neighbors:
	. Identify the nearest neighbors:
	. Define a function for model evaluation:
	. Extract features from the dataset and dump these features into a binary .dat file “my.dat”:
	. Train and test split on the dataset:
	. Make prediction using k Nearest Neighbours and get the accuracy on test data:
	. Test the classifier with new audio file

	9. Stock price prediction project using LSTM (Long
	. Imports:
	. Read the dataset:
	. Analyze the closing prices from dataframe:
	. Sort the dataset on date time and filter “Date” and “Close” columns:
	. Normalize the new filtered dataset:
	. Build and train the LSTM model:
	. Take a sample of a dataset to make stock price predictions using the LSTM model:
	. Save the LSTM model:
	. Visualize the predicted stock costs with actual stock costs:

	10. Fake news detection project:
	. Imports:
	. Read datasets:
	. Data cleaning and preparation:
	. Basic data exploration:

